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Motivation

» Existing KBQA benchmarks may not fully represent the diverse scenario
» KBs are enormous, structured and only partially observable (cannot be fully encoded by LMs)
* Robustness concerns « Data Augmentation for LMs * Retrieval Augmentation for LLMs

+  We aim to bridge this gap by * Graph search and question generation (GAIN) * Retrieving similar questions (k-shot)
+ exploring the limitations of current KBQA benchmarks + Graph search * Retrieving KB contexts for k samples and the input

. . . « Training question generator uestion
» proposing more comprehensive evaluation protocols . izati i i q ” ) .
proposing P P Verbalization using question generator + contexts: entities, logical forms and schema items

« Expanding training data d
* The sample size and schema distribution are extended relevant to the question

Experiments

Augmentation Approach

Challenges from Distribution Shifts
Setup

* Robustness is closely related to data distribution (Hendrycks et al., 2020)

» Training and inference using LMs face different distributions + Compared models * TIARA (Shu et al., 2022) as the base model for GAIN
* Models on GrailQA leaderboard + Due to its strong performance on zero-shot schema
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Conclusion

+ Call for further research into better evaluation protocols and enhancing the robustness of multiple aspects
» Results indicate that the existing methodologies for grounding LLMs are yet to prove their efficacy and
superiority

F1 scores (%) and average std of F1
|ntegrated As pect scores for each paraphrase set on the test
set of GraphQuestions
* Unknown schema and linguistic distribution based
on user query
+ Evaluating the pre-trained models on the unseen
human-curated WebQSP dataset, where the
questions are derived from search logs

Modal Aspect

* In-context learning for KB modality using LLM
without fine-tuning
* LLMs are mainly trained with texts rather than
KB contexts

Enumerating logical forms Question from search log +  Future research issues include _ 3
| | »  collecting more balanced environment-specific corpora
Crowdsourced question creation Logical form annotation . improving the LLM |earning paradigms
GrailQA, GraphQuestions WebQSP »  Our experiments show that the data augmentation techniques deserve further research.



