Distribution Shifts Are Bottlenecks: Extensive Evaluation for Grounding Language Models to Knowledge Bases

Yiheng Shu, Zhiwei Yu

圆角京大寮 ■ Microsoft

Motivation

- · Existing KBQA benchmarks may not fully represent the diverse scenario
- KBs are enormous, structured and only partially observable (cannot be fully encoded by LMs)
- Robustness concerns
- We aim to bridge this gap by
 - exploring the limitations of current KBQA benchmarks
- proposing more comprehensive evaluation protocols

Challenges from Distribution Shifts

- Robustness is closely related to data distribution (Hendrycks et al., 2020)
- Training and inference using LMs face different distributions

Environmental Aspect

- Schema-level generalization
 - The majority of KBQA benchmarks have i.i.d. schema generalization
- Evaluation Protocols (many unseen schema)
- KBQA: GrailQA / GraphQuestions
- · Relation linking: SimpleQuestions-Balance

Integrated Aspect

- · Unknown schema and linguistic distribution based on user query
 - Evaluating the pre-trained models on the unseen human-curated WebQSP dataset, where the questions are derived from search logs

Linquistic Aspect

- Adaptability to paraphrases
 - · Natural language can be expressed in a variety
 - . A new metric, the standard deviation (std) of EM/F1 scores for questions of each logical form

Modal Aspect

- · In-context learning for KB modality using LLM without fine-tuning
 - · LLMs are mainly trained with texts rather than

Experiments

Augmentation Approach

- · Data Augmentation for LMs
- Graph search and question generation (GAIN)
- · Graph search
- Training question generator
- · Verbalization using question generator
- · Expanding training data
- · The sample size and schema distribution are extended
- · Retrieval Augmentation for LLMs
- Retrieving similar questions (k-shot)
- · Retrieving KB contexts for k samples and the input
 - · contexts: entities, logical forms and schema items relevant to the question

Setup

- · Compared models
 - · Models on GrailQA leaderboard
- **Analyses**
- Environmental Aspect
 - · Effectiveness of synthesis and scaling up
 - Fine-tuning is better than few-shot learning in performance
- · Linquistic Aspect
 - · Improvements are linguistic biased
- Integrated Aspect
 - · Difficult transfer across datasets
 - · Causes from different data collection
- Modal Aspect
 - · Context alone is insufficient
 - · Notably, GPT often simply copies the logical forms in the retrieved contexts

Model on WebQSP	F1	Hits@1	
TIARA (T5-base) (Shu et al., 2022)	28.5	27.6	
TIARA** (T5-base) (Shu et al., 2022)	33.5	31.5	
BERT + Ranking* (Gu et al., 2021)	43.0	-	
TIARA + GAIN (T5-base)	29.1	28.2	
TIARA + GAIN (T5-3B)	29.8	28.7	
TIARA* + GAIN (T5-base)	33.9	31.8	
TIARA* + GAIN (T5-3B)	34.5	32.3	

F1 and Hits@1 scores (%) on WebQSP without fine-tuning on it; all models are trained on large-scale GrailQA; * denotes oracle entity annotations

- · TIARA (Shu et al., 2022) as the base model for GAIN
- Due to its strong performance on zero-shot schema

Model on GrailQA Test Set	Overall		I.I.D.		Compositional		Zero-shot	
	EM	F1	EM	F1	EM	F1	EM	F1
	Fine-	tuned M	1odels					
BERT + Ranking (Gu et al., 2021)	50.6	58.0	59.9	67.0	45.5	53.9	48.6	55.7
RnG-KBOA (Ye et al., 2022)	68.8	74.4	86.2	89.0	63.8	71.2	63.0	69.2
TIARA (T5-base) (Shu et al., 2022)	73.0	78.5	87.8	90.6	69.2	76.5	68.0	73.9
DecAF (FiD-3B) (Yu et al., 2022)	68.4	78.8	84.8	89.9	73.4	81.8	58.6	72.3
Pangu (BERT-base) (Gu et al., 2022a)	73.7	79.9	82.6	87.1	74.9	81.2	69.1	76.1
Pangu (T5-large) (Gu et al., 2022a)	74.8	81.4	82.5	87.3	75.2	82.2	71.0	78.4
Pangu (T5-3B) (Gu et al., 2022a)	75.4	81.7	84.4	88.8	74.6	81.5	71.6	78.5
	Codex	-driven	Models					
KB-BINDER (6)-R (Li et al., 2023)	53.2	58.5	72.5	77.4	51.8	58.3	45.0	49.9
Pangu (Codex) (Gu et al., 2022a)	56.4	65.0	67.5	73.7	58.2	64.9	50.7	61.1
	GAIN-a	ugmente	d Mode	ls				
TIARA + GAIN (T5-base)	75.1	80.6	88.3	91.0	73.0	79.6	69.9	76.4
TIARA + GAIN (T5-3B)	76.3	81.5	88.5	91.2	73.7	80.0	71.8	77.8
GPT-3.5-turbo (5-shot)	66.6	71.4	82.7	85.3	60.5	66.3	61.9	67.2

EM and F1 scores (%) on the hidden test set of GrailQA

Model on GraphQuestions	F1 (↑)	Std(↓)
GraphQuestions on Freebase	2013-07	
UDepLambda (Reddy et al., 2017)	17.7	-
PARA4QA (Dong et al., 2017)	20.4	-
SPARQA (Sun et al., 2020)	21.5	-
BERT + Ranking (Gu et al., 2021)	25.0	-
ArcaneQA (Gu and Su, 2022)	31.8	-
TIARA (T5-base) (Shu et al., 2022)	37.9	0.141
KB-BINDER (6) (Li et al., 2023)	39.5	-
TIARA + GAIN (T5-base)	45.5	0.153
TIARA + GAIN (T5-3B)	48.7	0.180
GraphQuestions on Freebase 20	015-08-0	9
BERT + Ranking (Gu et al., 2021)	27.0	-
ArcaneQA (Gu and Su, 2022)	34.3	-
TIARA (T5-base) (Shu et al., 2022)	41.2	0.157
Pangu (Codex) (Gu et al., 2022a)	44.3	-
Pangu (T5-3B) (Gu et al., 2022a)	62.2	-
TIARA + GAIN (T5-base)	49.5	0.170
TIARA + GAIN (T5-3B)	53.0	0.200

F1 scores (%) and average std of F1 scores for each paraphrase set on the test set of GraphQuestions

Conclusion

- · Call for further research into better evaluation protocols and enhancing the robustness of multiple aspects
- Results indicate that the existing methodologies for grounding LLMs are yet to prove their efficacy and superiority
- Future research issues include
 - collecting more balanced environment-specific corpora
- improving the LLM learning paradigms
- Our experiments show that the data augmentation techniques deserve further research.