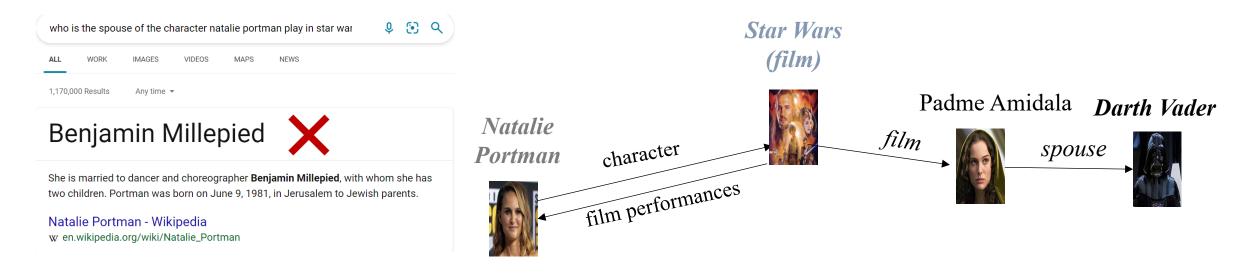
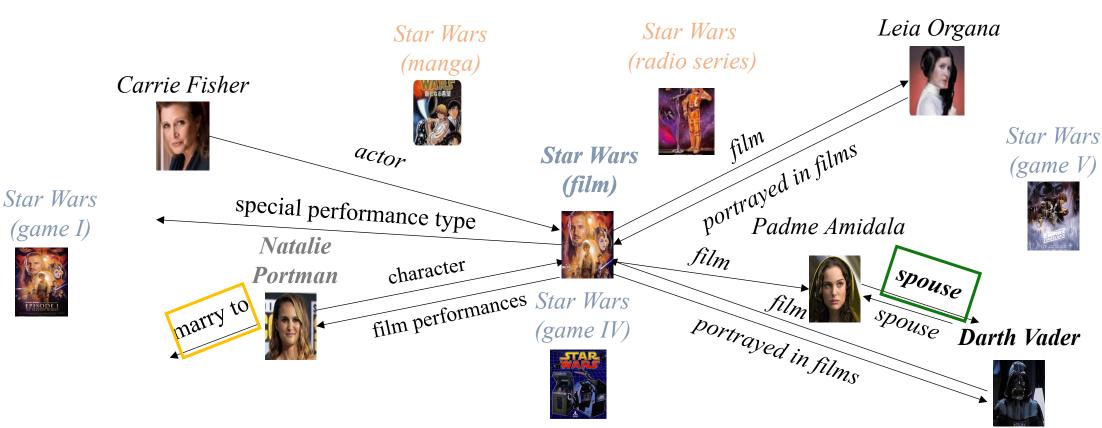
TIARA: Multi-grained Retrieval for Robust Question Answering over Large Knowledge Base

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F. Karlsson, Tingting Ma, Yuzhong Qu, Chin-Yew Lin



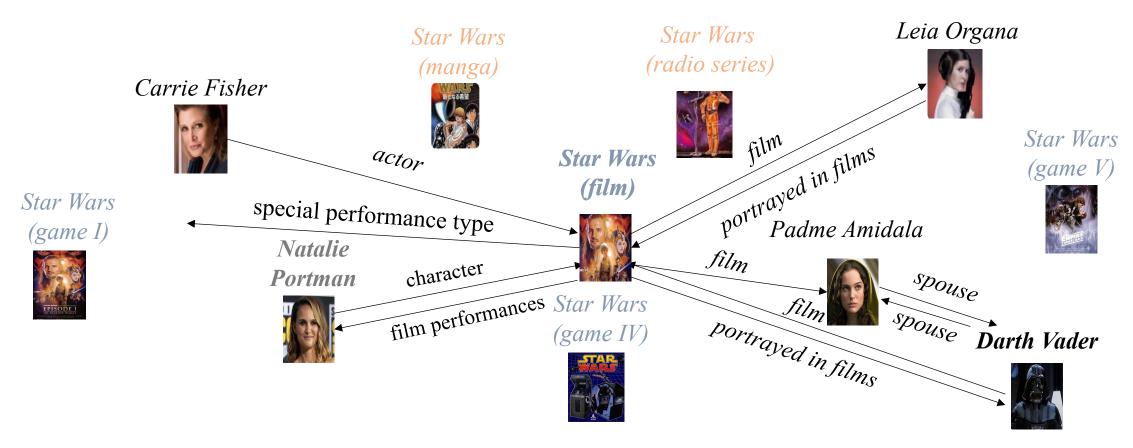
Knowledge Base Question Answering

who is the husband of the character natalie portman play in star wars?


Search engine based on text

vs. Reasoning over knowledge base

- Strong interpretability
- Abundant curated data
- Multi-hop and numerical reasoning


Challenges - Question Understanding

who is *the husband of* the character natalie portman play in star wars?

Challenges – Large Search Space

who is the husband of the character natalie portman play in star wars?

120 M+ entities, 45 M+ in 86 common domains (e.g., *Star wars, Natalie Portman* ...) 30 K+ schema items (e.g., *film performance, portrayed in films ...*)

Challenges - Compositional & Zero-shot Generalization

Corpus

what character did daniel naprous play in game of thrones?

who is the husband of leia organa?

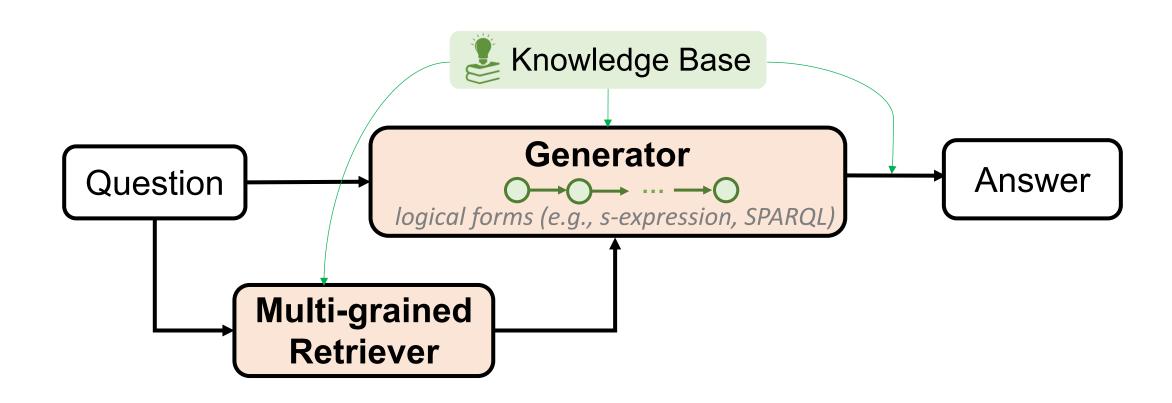
I.I.D.

independent and identically distributed

what character did carrie fisher play in shampoo?

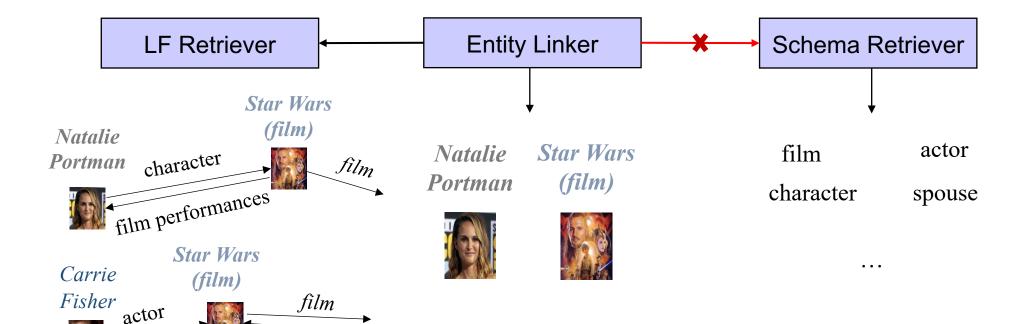
Compositional

novel compositions of schema items seen in training


who is the husband of the character natalie portman play in star wars?

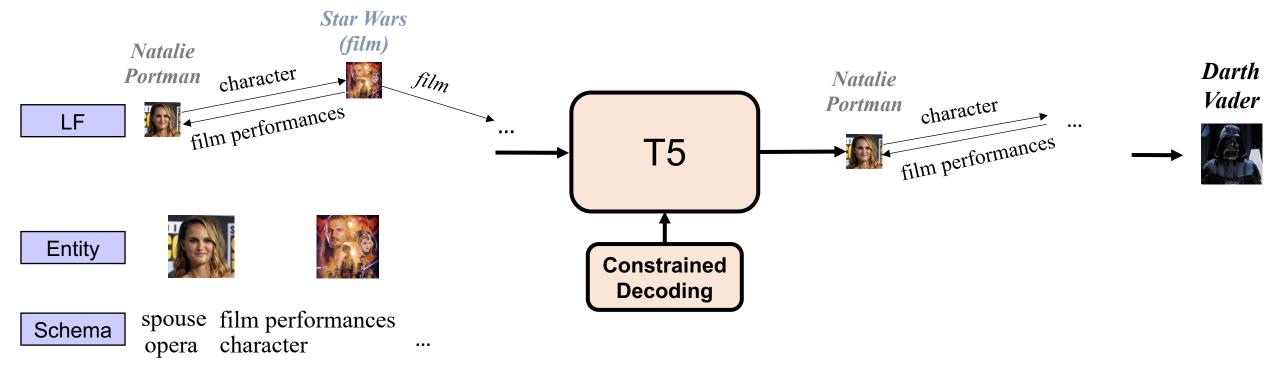
Zero-shot

unseen schema items, even from different domains


the latest released version of the game nicalis was published in what region?

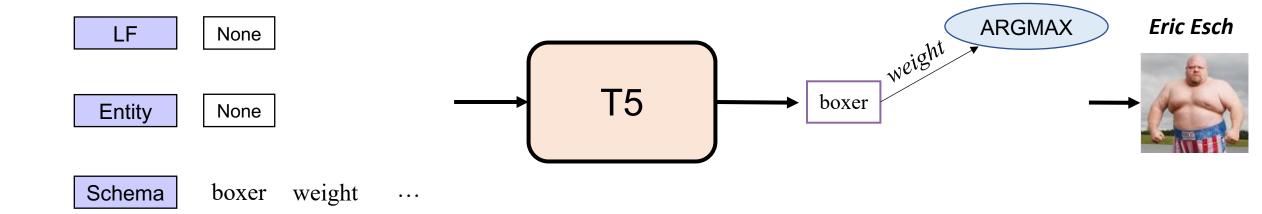
Logical Form Generation with Multi-grained Retrieval

Multi-grained Retriever


who is the husband of the character natalie portman play in star wars?

- LF retriever for KB structures
- Decouple the entity linker and schema retriever for semantic supplement
- Entities + Top-5 LFs + Top-10 classes/relations

Generation with Checking


who is the husband of the character natalie portman play in star wars?

- Leverage the generation power of PLM
- Checking the schema correctness and executability

Question without Entity

which boxer is theheaviest?

- Inference on questions without entities
- Compositional schemas

Evaluation Benchmark

GrailQA (OSU, Stanford etc.)

- 64,331 questions annotated with high quality involving up to 4 relationships
- Three-level generalization settings
 - > 1.1.D.
 - Test cases following the training distribution
 - CompositionalNovel compositions in test cases
 - Zero-shot
 Unseen schema items in test cases

Leaderboard: Overall

Here are the overall Exact Match (EM) and F1 scores evaluated on GrailQA test set. To get the EM score on GrailQA, please submit your results with logical forms in S-expression. Note that, submissions are ranked only based on F1, so feel free to choose your own meaning representation as EM won't affect your ranking.

Rank	Model	EM	F1
1 May 18, 2022	Tiara-QA (single model) Anonymous	72.081	77.491
2 Aug 20, 2021	RnG-KBQA (single model) Salesforce Research https://arxiv.org/abs/2109.08678	68.778	74.422
3 Apr 19, 2022	ArcaneQA V2 (single model) Anonymous	63.774	73.713
4 (Aug 12, 2021)	S2QL (single model) Anonymous	57.456	66.186
5 Apr 05, 2021	ReTraCk (single model) Microsoft Research Asia https://aclanthology.org/2021.acl-demo.39/	58.136	65.285
6 Feb 04, 2021	ArcaneQA V1 (single model) Anonymous	57.872	64.924
7 Jan 22, 2021	BERT+Ranking (single model) The Ohio State University	50.578	57.988
8 Jan 22, 2021	GloVe+Ranking (single model) The Ohio State University	39.521	45.136
9 Jan 22, 2021	BERT+Transduction (single model) The Ohio State University	33.255	36.803
10 Jan 22, 2021	GloVe+Transduction (single model) The Ohio State University	17.587	18.432

Top1 on GrailQA Leaderboard on May. 2022

Overall and Generalization Performance

		Overall		I.I.D.		Compositional		Zero-shot	
Method	EM	F1	EM	F1	EM	F1	EM	F 1	
GloVe + TRANSDUCTION (Gu et al., 2021)	17.6	18.4	50.5	51.6	16.4	18.5	3.0	3.1	
QGG (Lan and Jiang, 2020)	-	36.7	-	40.5	-	33.0	-	36.6	
BERT + TRANSDUCTION (Gu et al., 2021)	33.3	36.8	51.8	53.9	31.0	36.0	25.7	29.3	
GloVe + RANKING (Gu et al., 2021)	39.5	45.1	62.2	67.3	40.0	47.8	28.9	33.8	
BERT + RANKING (Gu et al., 2021)	50.6	58.0	59.9	67.0	45.5	53.9	48.6	55.7	
ReTraCk (Chen et al., 2021)	58.1	65.3	84.4	87.5	61.5	70.9	44.6	52.5	
$S^{2}QL$ (Zan et al., 2022)	57.5	66.2	65.1	72.9	54.7	64.7	55.1	63.6	
ArcaneQA (Gu and Su, 2022)	63.8	73.7	85.6	88.9	65.8	75.3	52.9	66.0	
RnG-KBQA (Ye et al., 2021)	68.8	74.4	86.2	89.0	63.8	71.2	63.0	69.2	
TIARA (Ours)	73.0	78.5	87.8	90.6	69.2	76.5	68.0	73.9	

Table 1: EM and F1 results (%) on the hidden test set of GrailQA. TIARA outperforms other methods with three levels of generalization settings in both EM and F1.

Evaluation Benchmark

WebQuestionsSP (Microsoft Research)

- 4,737 questions with full semantic parses
- SPARQL queries + rich semantic annotations

Method	F1	Hits@1
IR-based methods		
EmbedKGQA* (Saxena et al., 2020)	-	66.6
GRAFT-Net (Sun et al., 2018)	62.8	67.8
PullNet (Sun et al., 2019)	-	68.1
TransferNet [♥] (Shi et al., 2021)	-	71.4
Relation Learning [♥] (Yan et al., 2021)	64.5	72.9
NSM^{*}° (He et al., 2021)	67.4	74.3
Subgraph Retrieval* (Zhang et al., 2022)	74.5	83.2

Method		F1
SP-based (feature-based ranking) n	nethods	
TextRay [♥] (Bhutani et al., 2019)	60.3	-
Topic Units [♥] (Lan et al., 2019)	67.9	2
UHop (Chen et al., 2019)	68.5	-
GrailQA RANKING*♥♣ (Gu et al., 2021)	70.0	-
STAGG [♥] (Yih et al., 2016)	71.7	-
QGG [♥] (Lan and Jiang, 2020)	74.0	-
SP-based (seq2seq generation) me	thods	
NSM [♥] (Liang et al., 2017)	69.0	_
ReTraCk (Chen et al., 2021)	71.0	71.6
CBR-KBQA (Das et al., 2021)	72.8	-
ArcaneQA (Gu and Su, 2022)	75.6	-
RnG-KBQA (Ye et al., 2021)	75.6	-
Program Transfer*♣ (Cao et al., 2022b)	76.5	74.6
TIARA (Ours)	76.7	73.9
w/o Schema	76.4	73.7
w/o ELF	75.0	73.4
w/o ELF & Schema	73.2	71.1
TIARA*	78.9	75.2
w/o Schema	78.8	75.0
w/o ELF	76.2	74.5
w/o ELF & Schema	75.4	73.1

Table 2: F1 and hits@1 results (%) on WebQSP. * denotes using oracle entity linking annotations. ♥ denotes the assumption of a fixed number of hops. ♣ denotes pre-training on an auxiliary task or other KBQA datasets. For comparison, hits@1 on TIARA is obtained by randomly selecting one answer for each question 100 times.

Summary

Multi-grained Retriever is critical for the system robustness

Entity LF KB structure Schema semantic supplements

Given enough information, PLMs can reason with high accuracy

Limitations

- Logical form retriever is not efficient
- Require strong supervision
- Gap between the pretraining tasks and KBQA

Thank you!